On the Modeling of Voiceless Stop Sounds of Speech using Adaptive Quasi-Harmonic Models
نویسندگان
چکیده
In this paper, the performance of the recently proposed adaptive signal models on modeling speech voiceless stop sounds is presented. Stop sounds are transient parts of speech that are highly non-stationary in time. State-of-the-art sinusoidal models fail to model them accurately and efficiently, thus introducing an artifact known as the pre-echo effect. The adaptive QHM and the extended adaptive QHM (eaQHM) are tested to confront this effect and it is shown that highly accurate, pre-echo-free representations of stop sounds are possible using adaptive schemes. Results on a large database of voiceless stops show that, on average, eaQHM improves by 100% the Signal to Reconstruction Error Ratio (SRER) obtained by the standard sinusoidal model.
منابع مشابه
Timing differences in articulation between voiced and voiceless stop consonants: an analysis of cine-MRI data
Laryngeal and supralaryngeal articulators coordinately work to produce speech sounds. In order to study differences in supralaryngeal manifestations of voiced and voiceless consonants, we compared the tongue movement during a minimal pair /agise/ and /akise/ using the fast scanning techniques of MRI movies. The result showed that the tongue displacement starts earlier in /k/ than in /g/ for man...
متن کاملUsing Context-based Statistical Models to Promote the Quality of Voice Conversion Systems
This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...
متن کاملEstimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power
Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کامل